Offline and online energy-efficient monitoring of scattered uncertain logs using a bounding model

Author:

Ghosh Bineet,André Étienne

Abstract

Monitoring the correctness of distributed cyber-physical systems is essential. Detecting possible safety violations can be hard when some samples are uncertain or missing. We monitor here black-box cyber-physical system, with logs being uncertain both in the state and timestamp dimensions: that is, not only the logged value is known with some uncertainty, but the time at which the log was made is uncertain too. In addition, we make use of an over-approximated yet expressive model, given by a non-linear extension of dynamical systems. Given an offline log, our approach is able to monitor the log against safety specifications with a limited number of false alarms. As a second contribution, we show that our approach can be used online to minimize the number of sample triggers, with the aim at energetic efficiency. We apply our approach to three benchmarks, an anesthesia model, an adaptive cruise controller and an aircraft orbiting system.

Funder

French National Research Agency

National Science Foundation

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3