Time-Fluid Field-Based Coordination through Programmable Distributed Schedulers

Author:

Pianini Danilo,Casadei Roberto,Viroli Mirko,Mariani Stefano,Zambonelli Franco

Abstract

Emerging application scenarios, such as cyber-physical systems (CPSs), the Internet of Things (IoT), and edge computing, call for coordination approaches addressing openness, self-adaptation, heterogeneity, and deployment agnosticism. Field-based coordination is one such approach, promoting the idea of programming system coordination declaratively from a global perspective, in terms of functional manipulation and evolution in "space and time" of distributed data structures called fields. More specifically regarding time, in field-based coordination (as in many other distributed approaches to coordination) it is assumed that local activities in each device are regulated by a fair and unsynchronised fixed clock working at the platform level. In this work, we challenge this assumption, and propose an alternative approach where scheduling is programmed in a natural way (along with usual field-based coordination) in terms of causality fields, each enacting a programmable distributed notion of a computation "cause" (why and when a field computation has to be locally computed) and how it should change across time and space. Starting from low-level platform triggers, such causality fields can be organised into multiple layers, up to high-level, collectively-computed time abstractions, to be used at the application level. This reinterpretation of time in terms of articulated causality relations allows us to express what we call "time-fluid" coordination, where scheduling can be finely tuned so as to select the triggers to react to, generally allowing to adaptively balance performance (system reactivity) and cost (resource usage) of computations. We formalise the proposed scheduling framework for field-based coordination in the context of the field calculus, discuss an implementation in the aggregate computing framework, and finally evaluate the approach via simulation on several case studies.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Subject

General Computer Science,Theoretical Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3