Affine Extensions of Integer Vector Addition Systems with States

Author:

Blondin Michael,Haase Christoph,Mazowiecki Filip,Raskin Mikhail

Abstract

We study the reachability problem for affine $\mathbb{Z}$-VASS, which are integer vector addition systems with states in which transitions perform affine transformations on the counters. This problem is easily seen to be undecidable in general, and we therefore restrict ourselves to affine $\mathbb{Z}$-VASS with the finite-monoid property (afmp-$\mathbb{Z}$-VASS). The latter have the property that the monoid generated by the matrices appearing in their affine transformations is finite. The class of afmp-$\mathbb{Z}$-VASS encompasses classical operations of counter machines such as resets, permutations, transfers and copies. We show that reachability in an afmp-$\mathbb{Z}$-VASS reduces to reachability in a $\mathbb{Z}$-VASS whose control-states grow linearly in the size of the matrix monoid. Our construction shows that reachability relations of afmp-$\mathbb{Z}$-VASS are semilinear, and in particular enables us to show that reachability in $\mathbb{Z}$-VASS with transfers and $\mathbb{Z}$-VASS with copies is PSPACE-complete. We then focus on the reachability problem for affine $\mathbb{Z}$-VASS with monogenic monoids: (possibly infinite) matrix monoids generated by a single matrix. We show that, in a particular case, the reachability problem is decidable for this class, disproving a conjecture about affine $\mathbb{Z}$-VASS with infinite matrix monoids we raised in a preliminary version of this paper. We complement this result by presenting an affine $\mathbb{Z}$-VASS with monogenic matrix monoid and undecidable reachability relation.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Subject

General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decidability and Complexity of Decision Problems for Affine Continuous VASS;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. On simulating Turing machines with matrix semigroups with integrality tests;Theoretical Computer Science;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3