Abstract
International audience
The present paper is concerned with $\Omega$-estimates of the quantity $$(1/H)\int_{T}^{T+H}\vert(d^m/ds^m)\zeta^k(\frac{1}{2}+it)\vert dt$$ where $k$ is a positive number (not necessarily an integer), $m$ a nonnegative integer, and $(\log T)^{\delta}\leq H \leq T$, where $\delta$ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results.
%It is proved that if $2k\geq1$ and $T\geq T_0(\delta)$, then $$(1/H)\int_{T}^{T+H}\vert \zeta(\frac{1}{2}+it)\vert^{2k}dt > (\log H)^{k^2}(\log\log H)^{-C}$$ and $$(1/H)\int_{T}^{T+H} \vert\zeta'(\frac{1}{2}+it)\vert dt > (\log H)^{5/4}(\log\log H)^{-C},$$ where $C$ is a constant depending only on $\delta$.
Publisher
Centre pour la Communication Scientifique Directe (CCSD)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Negative moments of the Riemann zeta-function;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-06
2. Moments of the Hurwitz zeta function on the critical line;Mathematical Proceedings of the Cambridge Philosophical Society;2022-11-28
3. Analysis;Landscape of 21st Century Mathematics;2021
4. Low Pseudomoments of the Riemann Zeta Function and Its Powers;International Mathematics Research Notices;2020-07-24
5. CONTINUOUS LOWER BOUNDS FOR MOMENTS OF ZETA ANDL‐FUNCTIONS;Mathematika;2012-11-15