Evaluation of numerical diffusion of the finite volume method when modelling surface waves

Author:

Тятюшкина Елена Сергеевна,Козелков Андрей Сергеевич,Куркин Андрей Александрович,Курулин Вадим Викторович,Ефремов Валентин Робертович,Уткин Дмитрий Александрович

Abstract

Обсуждается применение метода конечных объемов при решении уравнений Навье-Стокса для моделирования поверхностных волн. Сформулирована задача о распространении поверхностных волн, которая используется для оценки численной диффузии в решении уравнений Навье-Стокса. Предлагается методика оценки численной диффузии, выражаемой коэффициентом уменьшения амплитуды волны при прохождении ею одной своей длины (коэффициентом затухания). Дана оценка размеров сетки и шага по времени, выраженных в безразмерных величинах относительно параметров волны, необходимых для обеспечения приемлемого значения коэффициента затухания. Показана степень влияния каждого из сеточных параметров на увеличение коэффициента затухания. The application of numerical simulation methods based on the solution of the full three-dimensional Navier-Stokes equations for modelling of wave propagation on the water surface requires the construction of a grid model containing countable nodes throughout the entire volume of water medium. Insufficient grid resolution leads to insufficient detailing of the fields of velocity and pressure, as well as volume fraction of the liquid, which increases the numerical diffusion of the method and, ultimately, leads to an underestimation of oscillation amplitudes of the medium. A large time step also results in a “blurring” of the solution and significantly reduces its stability, especially when using the schemes which compress the front of the media interface. This paper presents the results of an assessment of acceptable grid sizes and time steps expressed in dimensionless parameters with respect to the wave parameters necessary to ensure accuracy of the solution sufficient for geophysical applications. The estimate is given for the method of calculating three-dimensional multiphase flows with a free surface based on solving the Navier-Stokes equations in a one-velocity approximation based on a completely implicit connection between velocity and pressure using the finite volume method. The finite volume method for the numerical solution of the Navier-Stokes equations is implemented for use on arbitrary unstructured grids. The methodology for estimation of numerical diffusion of the calculation method is proposed. This estimation is expressed as a percentage of the wave amplitude decrease at the distance equal to the one wavelength. In turn the methodology is based on the parameters entered to estimate the acceptable grid sizes and time step for the calculation method. Based on the described methodology, the results of the estimation of the grid resolution in the horizontal and vertical directions, the estimation of the time step, and the evaluation of the influence of the discretization scheme of the convective term are presented.

Publisher

Federal Research Center for Information and Computational Technologies

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Numerical Analysis,Software

Reference15 articles.

1. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1973. 847 c.

2. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.

3. Ferziger, J.H., Peric, M. Computational method for fluid dynamics. New York: SpringerVerlag, 2002. 423 p.

4. Козелков А.С. Методика численного моделирования цунами оползневого типа на основе уравнений Навье-Стокса // Вычисл. механика сплошных сред. 2016. Т. 9, № 2. C. 218-236.

5. Kozelkov, A.S., Kurkin, A.A., Pelinovsky, E.N. et al. Landslide-type tsunami modelling based on the Navier-Stokes equations // Sci. of Tsunami Hazards. 2016. Vol. 35, No. 3. P. 106-144.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3