PREDICTION OF CRYPTO MONEY PRICES WITH LSTM AND GRU MODELS

Author:

DEMİRCİ Esranur1ORCID,KARAATLI Meltem2ORCID

Affiliation:

1. SAMSUN ÜNİVERSİTESİ

2. SÜLEYMAN DEMİREL ÜNİVERSİTESİ

Abstract

Yakın geçmişte hayatımıza giren ve kısa zamanda finansal piyasalarda kendisine yer bulan kripto paralar, hem bir değişim aracı hem de bir yatırım aracı olarak kullanılmaktadır. Kripto paraların merkezi bir otoritenin kontrolünde olmaması bu araçların fiyatlarında dalgalanmaları beraberinde getirmiştir. Bu nedenle, akıllı bir tahmin modelinin geliştirilmesi, yatırım yapılacak finansal varlıkların seçimi ve yatırım kararlarının hayata geçirilmesi açısından oldukça önemlidir. Derin öğrenme ve yapay zeka, yatırım yapılacak olan kripto para birimi ve diğer yatırım araçlarının seçiminde kullanılmaktadır. Tekrarlayan Sinir Ağı (RNN), Uzun-Kısa Süreli Bellek (LSTM) ve Geçitli Yinelenen Birim (GRU) modeli gibi derin öğrenme modellerinin, kripto para birimi fiyat tahmininde geleneksel zaman serisi modellerinden daha iyi performans gösterdiği araştırmacılar tarafından kanıtlanmıştır. Bundan dolayı bu çalışmada, özel bir RNN yöntemi olan LSTM ve GRU’dan yararlanılarak, günümüzde piyasa değeri ve işlem hacmi en yüksek olan kripto paralardan Bitcoin, Ethereum ve Ripple’ın 30 günlük fiyat tahmininde bulunulmuştur. Araştırmanın sonucunda her iki modelde de en iyi tahmin sonucunu Bitcoin vermiştir. İkinci en iyi tahmin sonucu Ripple, sonrasında ise Ethereum için bulunmuştur. Kullanılan yöntemler karşılaştırıldığında ise MAPE performans ölçütüne göre en iyi tahmin sonucuna Bitcoin ve Ripple için GRU, Ethereum için ise LSTM modeli ile ulaşılmıştır.

Publisher

Mehmet Akif Ersoy Universitesi Iktisadi ve Idari Bilimler Fakultesi Dergisi

Subject

Organic Chemistry,Biochemistry

Reference56 articles.

1. Avrupa Merkez Bankası. (2020, Eylül). US Dollar (USD). Erişim adresi https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/usd.xml

2. BtcTurk. (2013). Bitcoin (BTC) Nedir?. Erişim adresi https://www.btcturk.com/bilgi-platformu/bitcoin-btc-nedir/

3. Buterin, V. (2014). A Next-Generation Smart Contract and Decentralized Application Platform. Erişim adresi https://github.com/ethereum/wiki/wiki/White-Paper

4. Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, June 3.

5. Coin Medya. (2020). Ethereum Nedir?. Erişim adresi https://btc.coinmedya.com/ethereum-nedir.html

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3