MAKİNE ÖĞRENMESİ İLE ULUSLARARASI MUHASEBEDE ERTELENMİŞ VERGİLERİN TAHMİNLEMESİ

Author:

KOÇ Feden1,SEÇKİN Ahmet Çağdaş2,BAYRİ Osman3

Affiliation:

1. Uşak Üniversitesi

2. ADNAN MENDERES UNIVERSITY

3. SULEYMAN DEMIREL UNIVERSITY

Abstract

The aim of this study is to estimate the possible deferred tax values and the TAS-TFRS profit/loss of 31 companies in three different sectors- the wholesale trade, retail trade and hospitality industry- whose shares are traded on Borsa Istanbul (BIST). This estimation is based on the companies' deferred tax values for the years 2015-2019 as well as twelve main economic parameters. Within the context of the study, the deferred tax output parameters, which companies will present in their annual financial reports in 2020, have been estimated using the following methods: the DTA value using the random forest method with an accuracy rate of 0,823, the net DTA value using the artificial neural networks method with an accuracy rate of 0,790, the DTL value using the random forest method with an accuracy rate of 0,823 and the net DTL value using the random forest method with an accuracy rate of 0,887. In addition, it has been discovered that the TAS-TFRS profit/loss, which is one of the output parameters, can be estimated using the random forest method with an accuracy rate of 0,629.

Publisher

Mehmet Akif Ersoy Universitesi Iktisadi ve Idari Bilimler Fakultesi Dergisi

Subject

Organic Chemistry,Biochemistry

Reference40 articles.

1. Abraham, M. (2019). Studying The Patterns and Long-Run Dynamics İn Cryptocurrency Prices. Journal of Corporate Accounting & Finance, 21(3), 1-2. doi: 10.1002/jcaf.22427.

2. Alpaydın, E. (2009). Introduction to Machine Learning. (4. Edition). Cambridge/Massachusetts: MIT press.

3. Altman, N. S. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 46(3), 175–85. doi: 10.2307/2685209.

4. Altunöz. U. (2013). Prediction of Financial Failure of Banks by Artifical Neural Network Model. Dokuz Eylul University Faculty of Economics and Administrative Sciences Journal, 28(2), 189.

5. Anderson, D. and George M. (1992). Artificial Neural Networks Technology. Data & Analysis Center for Software (DACS) State-of-the-Art Report. ELIN: A011. New York: Kaman Sciences Corporation, New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3