Optimization of Aquaponic Lettuce Evapotranspiration Based on Artificial Photosynthetic Light Properties Using Hybrid Genetic Programming and Moth Flame Optimizer

Author:

Bautista Mary Grace Ann,Concepcion II Ronnie,Bandala Argel,Mendigoria Christan Hail,Dadios Elmer

Abstract

Land and water resources, climate change, and disaster risks significantly affect the agricultural sector. An effective solution for growing crops to improve productivity and optimize the use of resources is through controlled-environment agriculture (CEA). Evapotranspiration (ET) is an important greenhouse crop attribute that can be optimized for optimum plant growth. Light intensity and radiation are significant for controlling ET. To address this challenge, this study successfully determined the properties of optimum artificial light for minimum evapotranspiration rate of head development-stage and harvest-stage lettuce under light-period and dark-period using genetic programming and bio-inspired algorithms namely, grey wolf optimization (GWO), whale optimization algorithm (WOA), dragonfly algorithm (DA), and moth flame optimization (MFO). MFO provided the optimized global solution for the configured models. Results showed that head development-stage lettuce requires higher light intensity with lower visible to infrared radiation ratio (Vis/IR) than harvest-stage lettuce when exposed to light. On the other hand, harvest-stage lettuce requires higher light intensity with lower Vis/IR than head development-stage under dark-period respiration reaction. Findings of this study can be utilized in growing and improving yield crops in controlled-environment agriculture.

Publisher

Agrivita, Journal of Agricultural Science (AJAS)

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable and Interpretable Artificial Intelligence as a Service for Green Smart Cities and Communities;2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2023-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3