The Influence of Electromyographic on Electroencephalogram-Based Monitoring: Putting the Forearm on the Forehead

Author:

Lichtenfeld Felicitas1,Kratzer Stephan12,Hinzmann Dominik1,García Paul S.3,Schneider Gerhard1,Kreuzer Matthias1

Affiliation:

1. Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Munich, Germany

2. Department of Anesthesia and Intensive Care Medicine, Hessing Foundation, Augsburg, Germany

3. Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York.

Abstract

BACKGROUND: Monitoring the electroencephalogram (EEG) during general anesthesia can help to safely navigate the patient through the procedure by avoiding too deep or light anesthetic levels. In daily clinical practice, the EEG is recorded from the forehead and available neuromonitoring systems translate the EEG information into an index inversely correlating with the anesthetic level. Electrode placement on the forehead can lead to an influence of electromyographic (EMG) activity on the recorded signal in patients without neuromuscular blockade (NMB). A separation of EEG and EMG in the clinical setting is difficult because both signals share an overlapping frequency range. Previous research showed that indices decreased when EMG was absent in awake volunteers with NMB. Here, we investigated to what extent the indices changed, when EEG recorded during surgery with NMB agents was superimposed with EMG. METHODS: We recorded EMG from the flexor muscles of the forearm of 18 healthy volunteers with a CONOX monitor during different activity settings, that is, during contraction using a grip strengthener and during active diversion (relaxed arm). Both the forehead and forearm muscles are striated muscles. The recorded EMG was normalized by z-scoring and added to the EEG in different amplification steps. The EEG was recorded during anesthesia with NMB. We replayed these combined EEG and EMG signals to different neuromonitoring systems, that is, bispectral index (BIS), CONOX with qCON and qNOX, and entropy module with state entropy (SE) and response entropy (RE). We used the Friedman test and a Tukey-Kramer post hoc correction for statistical analysis. RESULTS: The indices of all neuromonitoring systems significantly increased when the EEG was superimposed with the contraction EMG and with high EMG amplitudes, the monitors returned invalid values, representative of artifact contamination. When replaying the EEG being superimposed with “relaxed” EMG, the qCON and BIS showed significant increases, but not SE and RE. For SE and RE, we observed an increased number of invalid values. CONCLUSIONS: With our approach, we could show that EMG activity during contraction and resting state can influence the neuromonitoring systems. This knowledge may help to improve EEG-based patient monitoring in the future and help the anesthesiologist to use the neuromonitoring systems with more knowledge regarding their function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Substance-dependent EEG during recovery from anesthesia and optimization of monitoring;Journal of Clinical Monitoring and Computing;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3