Varied Morphological Study of Albite Nanomaterials at Low Temperature with Co-effect of Single Walled Nanotubes and Graphene Oxide for Kevlar Fabric Strength

Author:

Dilbraiz Muhammad Arsalan,Ahmed Naveed,Javid Muhammad Tariq,Zada Amir,Wazir Hameed Ullah,Ahmed Saad

Abstract

A comprehensive study of synthesizing zeolite nanoparticles, with the addition of organic template, by reflux method has been chalked out to form crystals. The method is effectivly for the synthesis of zeolite nanocrystals, incorporating alkali metals, silica and organic template. The organic templates tetra-propyl ammonium hydroxide (TPAOH), tetra-propyl ammonium bromide (TPABr) or (TPABr, N,N,N-tripropyl-1-propanaminiumbromide), tetraethyl orthosilicate (TEOS) were added to assist the formation of zeolite (Albite) crystals. A cross linker tetraethyl orthosilicate (TEOS) was also mixed. Addition of carbon nanotubes (CNTs) and graphene oxide (GO) resulted into a unique nano morphology of Albite (when the time of reaction was less than 240 h). Effect of additives on morphology, particle size, crystal geometry, surface area, and particle shapes was characterized with FT-IR, X-ray diffraction, BET, EDX and SEM. For the practical point of view, Kevlar supported polymer membrane with the Zeolite as catalyst is used. Results show that polymeric supported fabric and catalyst supported fabric have same result with response to mechanical testing. This suggest that the Kevlar supported polymer membrane has potential application in industrial cables, asbestos replacement brake lining, under water applications, tyres, and body armors.

Publisher

Hexa Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3