1. [1] G. Choy, O. Khalilzadeh, M. Michalski, et al.: Current applications and future impact of machine learning in radiology, Radiology, Vol.288, pp.318-28, 2018.
2. [2] ] Japan Network for Research and Information on Medical Exposure (J-RIME): National Diagnostic Reference Levels in Japan (2020) - Japan DRLs 2020-. http://www.radher.jp/J-RIME/report/DRL2020_Engver.pdf, 2020.
3. [3] H. Munker: Chromatic grids, projection to the retina, and translation theory-based description of the color perception, Habilitation thesis, Ludwig-Maximilians University, Munich, 1970.
4. [4] K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016.
5. [5] A. Matsushima, C. Tai-Been, T. Okamoto, et al.: Basic study of a knee joint radiography positioning determination system using convolutional neural network transfer learning, Poster presented at European Congress of Radiology, 2021 (online).