Design and Construction of Zana Robot for Modeling Human Player in Rock-paper-scissors Game using Multilayer Perceptron, Radial basis Functions and Markov Algorithms

Author:

Ghasemi MaryamORCID,Roshani AbdolrezaORCID,Muhammad Ali Peshawa J.ORCID,Nia Farhad F.,Nazemi EhsanORCID,Roshani Gholam H.ORCID

Abstract

In this paper, the implementation of artificial neural networks (multilayer perceptron [MLP] and radial base functions [RBF]) and the upgraded Markov chain model have been studied and performed to identify the human behavior patterns during rock, paper, and scissors game. The main motivation of this research is the design and construction of an intelligent robot with the ability to defeat a human opponent. MATLAB software has been used to implement intelligent algorithms. After implementing the algorithms, their effectiveness in detecting human behavior pattern has been investigated. To ensure the ideal performance of the implemented model, each player played with the desired algorithms in three different stages. The results showed that the percentage of winning computer with MLP and RBF neural networks and upgraded Markov model, on average in men and women is 59%, 76.66%, and 75%, respectively. Obtained results clearly indicate a very good performance of the RBF neural network and the upgraded Markov model in the mental modeling of the human opponent in the game of rock, paper, and scissors. In the end, the designed game has been employed in both hardware and software which include the Zana intelligent robot and a digital version with a graphical user interface design on the stand. To the best knowledge of the authors, the precision of novel presented method for determining human behavior patterns was the highest precision among all of the previous studies.

Publisher

Koya University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3