Markov Chains for Computer Music Generation

Author:

Shapiro Ilana,Huber Mark

Abstract

Random generation of music goes back at least to the 1700s with the introduction of Musical Dice Games. More recently, Markov chain models have been used as a way of extracting information from a piece of music and generating new music. We explain this approach and give Python code for using it to first draw out a model of the music and then create new music with that model.

Publisher

Claremont Colleges Library

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Study on Algorithm-Based Music Generation;2023 4th International Conference on Machine Learning and Computer Application;2023-10-27

2. Adaptive Generative-Music Application For Cognitive Support During Maritime and Aerial Travel;2023 IEEE 9th World Forum on Internet of Things (WF-IoT);2023-10-12

3. MRBERT: Pre-Training of Melody and Rhythm for Automatic Music Generation;Mathematics;2023-02-04

4. Markov Chain Sequence Modeling;2022 3rd International Informatics and Software Engineering Conference (IISEC);2022-12-15

5. IoHMT: a probabilistic event-sensitive music analytics framework for low resource internet of humanitarian musical things;Innovations in Systems and Software Engineering;2022-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3