Author:
Ritelli Daniele, ,Spaletta Giulia,
Abstract
This paper is devoted to the analytical treatment of trinomial equations of the form \(y^n+y=x,\) where \(y\) is the unknown and \(x\in\mathbb{C}\) is a free parameter. It is well-known that, for degree \(n\geq 5,\) algebraic equations cannot be solved by radicals; nevertheless, roots are described in terms of univariate hypergeometric or elliptic functions. This classical piece of research was founded by Hermite, Kronecker, Birkeland, Mellin and Brioschi, and continued by many other Authors. The approach mostly adopted in recent and less recent papers on this subject (see [<a href="#1">1</a>,<a href="#2">2</a>] for example) requires the use of power series, following the seminal work of Lagrange [<a href="#3">3</a>]. Our intent is to revisit the trinomial equation solvers proposed by the Italian mathematician Davide Besso in the late nineteenth century, in consideration of the fact that, by exploiting computer algebra, these methods take on an applicative and not purely theoretical relevance.
Publisher
Ptolemy Scientific Research Press
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献