Abstract
This article proposes a new unit distribution based on the power-logarithmic scheme. The corresponding cumulative distribution function is defined by a special ratio of power and logarithmic functions that is dependent on one parameter. We show that this function benefits from great flexibility characterized by a large selection of convex and concave shapes. The other key functions are determined and studied. In particular, we show that the probability density function may take on different decreasing or U shapes, and the hazard rate function has a wide panel of U shapes. These functional capabilities are rare for a one-parameter unit distribution. In addition, we prove certain stochastic order results, provide the expression of the quantile function via the Lambert function, some interesting distributional results, and give simple expressions for the ordinary moments, mean, variance, skewness, kurtosis, moment generating function and incomplete moments. Subsequently, a basic statistical approach is described, to show how the new distribution can be applied in a data analysis scenario. Finally, complementary mathematical findings are presented, yielding new integrals linked to the Euler constant via some well-known moments properties.
Publisher
Ptolemy Scientific Research Press
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献