A Potential Hydrogen Sources from Milled Silicon Powder Activated by Lithium, and Aluminum Chloride
-
Published:2017-07-28
Issue:3
Volume:20
Page:123-127
-
ISSN:2292-1168
-
Container-title:Journal of New Materials for Electrochemical Systems
-
language:
-
Short-container-title:J. New Mat. Electrochem. Sys.
Author:
Yin Tianchu,ShenTu Hongwei,Xi Chengqiao,Chen Xin,Zou Wenzhen,Fan Meiqiang
Abstract
A potential hydrogen source generated from milled Li-Si-AlCl3 composite was evaluated in this paper. The composite exhibits good hydrogen generation performance in water at 313–343 K, whereas pure silicon powder cannot continuously react with water under similar conditions. The hydrogen yield reaches 1300 mL hydrogen/g within 20 min, and the highest hydrogen generation rate is higher than 1200 mL hydrogen/g min within the first minute of hydrolysis. The hydrogen generation performance increases with increasing concentrations of lithium and aluminum chloride. Microstructure analysis indicates that silicon activity increases due to decreased particle size and distribution of lithium and aluminum chloride into silicon matrix during milling. The hydrolysis of the additives generates heat and alkaline hydrolysis byproducts, thereby stimulating the hydrolysis rate of silicon in the micro area. Therefore, the hydrolysis of silicon in water may act as a potential hydrogen source for portable micro fuel cells.
Publisher
Journal of New Materials for Electrochemical Systems
Subject
Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献