Author:
Gasper Paul,Hines Joshua,Miralda Jean-Paul,Bonhomme Ricardo,Schaufeld Jerome,Apelian Diran,Wang Yan
Abstract
Spent primary alkaline batteries present an unused source of secondary metals in Europe and the US, with at least 300,000 metric tons of batteries being landfilled each year. While battery recycling programs exist, current hydrometallurgical and pyrometallurgical processes are not profitable when used for dedicated alkaline battery recycling, so industry growth is difficult. A novel mechanical separation process consisting of shredding, baking, magnetic separation, and specific gravity separation was developed to recycle one metric ton per hour of alkaline batteries at lower cost than current methods, while being environmentally beneficial. Financial analysis was conducted using a Process-Based Cost Model to address the challenges of modeling a recycling process. At full capacity, the cost to recycle alkaline batteries via the developed process is $529 per metric ton, +/- 25%, not including transportation, with revenue of $383 per metric ton. This cost is lower than that of other reported processes, but is still not economically feasible. With supplemental revenue of $0.3 per kg, which could come from various sources, the return on investment can occur in just under 3 years. The low value of alkaline battery recovery material is identified as the most significant economic barrier for the recycling.
Publisher
Journal of New Materials for Electrochemical Systems
Subject
Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献