Computational Investigation of Vertical Axis Wind Turbine in Hydrogen Gas Generation Using PEM Electrolysis
-
Published:2022-08-31
Issue:3
Volume:25
Page:172-178
-
ISSN:1480-2422
-
Container-title:Journal of New Materials for Electrochemical Systems
-
language:
-
Short-container-title:JNMES
Abstract
Both offshore wind and hydrogen generation are increasingly seen as central to global decarbonization. The objective of current research is to investigate the effect of wind turbine height of Vertical Axis Wind Turbine (VAWT) on hydrogen generation. The numerical investigation of VAWT is conducted using techniques of Computational Fluid Dynamics. The VAWT design is developed in Solidworks design software and CFD analysis is conducted using ANSYS CFX software. The CFD analysis conducted on VAWT aided to determine the torque generated from it at 10m/s wind velocity determining the system impacts and ability of electrolyzer technology to accommodate the varying input from wind turbine. The research findings have shown that height of VAWT blade has significant effect on power generation. The power generation from VAWT increases with increase in blade height. The maximum hydrogen mass is generated for 850mm height wind turbine i.e., 2.09Kg. The external wind flow conditions have significant effect on power generation from VAWT and therefore the effect of varying air flow conditions needs to be investigated.
Publisher
Journal of New Materials for Electrochemical Systems
Subject
Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献