Enhanced Hydrogen Generation by LiBH4 Hydrolysis in MOH/water Solutions (MOH: C2H5OH, C4H8O, C4H9OH, CH3COOH) for Micro Proton Exchange Membrane Fuel Cell Application

Author:

Xu Lan,Wang Yu,Zhou Ling tong,Xia Wei,Li Zhu jian,Fan Mei Qiang,Zou Yong Jin

Abstract

LiBH4 has high hydrogen storage capacity, and its high gravimetric hydrogen density reaches 18.36%. However, LiBH4 exhibits poor hydrolysis performance in water because the abrupt ending caused by the agglomeration of its hydrolysis products limits its full utilization [1, 2]. In this paper, four kinds of organics, namely, ethanol, tetrahydrofuran, acetic acid, and butanol (referred to MOH) were added to water, and the effect of MOH species and amount on the hydrolysis performances of LiBH4 was evaluated. Results show that agglomeration can be avoided and that LiBH4 has a controllable hydrogen generation rate and high hydrogen generation amount inMOH/water solutions compared with that in pure water. The order in terms of the hydrolysis performance of LiBH4 in MOH/water solutions is as follows: acetic acid >butanol> tetrahydrofuran >ethanol. From XRD, SEM, and other analyses, the enhancement performance is explained by the diluting and solvent effects. Moreover, the addition of MOH alters the hydrolysis route of LiBH4. MOH acts as not only a carrier for water and LiBH4 but also as a reactant to form intermediate LiBH4·[MOH(H2O)x]y, which slows the hydrolysis kinetics of LiBH4. Hydrolysis conditions were optimized, and high hydrogen amount was achieved correspondingly. The experimental data presents the potential application of LiBH4 as a highly efficiency and stable hydrogen source for fuel cells.

Publisher

Journal of New Materials for Electrochemical Systems

Subject

Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3