Synthesis of Honeycomb-Shaped LiNi0.5Mn0.5O2 Using a Sol-Gel Method with Polymethylmethacrylate (PMMA) and Organic Surfactant

Author:

Lee Seon-Jin,Kim Hea-in,Park Eui-Jeong,Son Jong-Tae

Abstract

Layered-structural LiNi0.5Mn0.5O2 has high discharge capacity, abundant availability, enhanced chemical stability, convenient environmental benignancy, and low cost. However, LiNi0.5Mn0.5O2 suffers from poor intrinsic rate capability due to its poor ionic conductivity (2.54 × 10-7 S/cm) and poor cycle stability owing to the volume change of the cathode materials during cycling. To address this issue, honeycomb-shaped LiNi0.5Mn0.5O2 was developed for lithium-ion batteries using a sol-gel method with spherical polymethylmethacrylate (PMMA) particles. PMMA particles provide spherical voids in LiNi0.5Mn0.5O2 cathode materials due to their relatively low decomposition temperature (< 350 °C). Honeycomb-shaped LiNi0.5Mn0.5O2 has a higher surface area (2.63 m2/g) than the LiNi0.5Mn0.5O2 (2.00 m2/g) produced by conventional sol-gel method. The initial discharge capacities of conventional nano LiNi0.5Mn0.5O2 and honeycomb-shaped LiNi0.5Mn0.5O2 are 151.9 mAh g-1 and 200.4 mAh g-1, respectively at 0.1 C. After 50 cycles at 1 C, honeycomb-shaped LiNi0.5Mn0.5O2 has a larger capacity retention than conventional nano LiNi0.5Mn0.5O2, measuring 67.9% and 58.8%, respectively. The superior electrochemical performance of honeycomb-shaped LiNi0.5Mn0.5O2 increases the effective surface area for Li-ion diffusion, leading to better rate capability, and buffers the volume change during Li+ion insertion/extraction, improving the cycling stability.

Publisher

Journal of New Materials for Electrochemical Systems

Subject

Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3