Effect of Milling on the Electrochemical Properties of Nanostructured Li(Fe0.8Mn0.2)PO4 as Cathodes for Li-ion Batteries
-
Published:2017-04-22
Issue:1
Volume:20
Page:039-042
-
ISSN:2292-1168
-
Container-title:Journal of New Materials for Electrochemical Systems
-
language:
-
Short-container-title:J. New Mat. Electrochem. Sys.
Author:
Torabi Morteza,Neyshabouri Alireza Tavakkoli,Mohammad Bahram Soltan,Razavi S. H.,Rad Mansoor Kianpour
Abstract
Phospho-olivine Li(Fe0.8Mn0.2)PO4 was synthesized using high-temperature solid state procedure. Ball milling was used to decrease the particle size of the active material. X-ray diffraction (XRD) confirmed formation of the phospho-olivines. The crystallite size of the ball-milled particles was calculated about 64.9 nm. Scanning electron microscopy (SEM) also showed polygonal particles of the ball-milled Li(Fe0.8Mn0.2)PO4 and homogeneous distribution of the iron and manganese. Electrochemical evaluation of the ball-milled Li(Fe0.8Mn0.2)PO4 demonstrated faster kinetic reaction with respect to the as-synthesized Li(Fe0.8Mn0.2)PO4. The ball milling process led to highest capacity between the samples (150 mAh g-1 at 0.1 mA cm-2); however, annealing the ball-milled samples showed the best cyclic performance (3% fading after 50 cycles). Ball milling process caused nanostructured Li(Fe0.8Mn0.2)PO4 with lower diffusion length, higher electrical conductivity and higher capacity.
Publisher
Journal of New Materials for Electrochemical Systems
Subject
Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献