Carboxymethyl Tamarind Kernel Gum /ZnO- Biocomposite: As an Antifungal and Hazardous Metal Removal Agent

Author:

Meena Jagram,Chandra Harish,Warkar Sudhir G.

Abstract

ZnO nanoparticles (ZnO NPs) were in situ mixed with carboxymethyl tamarind kernel gum to generate the new biocomposite. High-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and dynamic light scattering (DLS)were used to characterize the CMTKG/ZnO nanocomposites. Numerous characterizations were utilized to prove that ZnO NPs had been integrated into the biopolymer matrix. The standard size of the CMTKG/ZnO nanocomposites was developed to be greater than 32–40 nm using high-resolution transmission electron microscopy and x-ray analysis de-Scherer methods. Chromium (VI) was removed from the aqueous solution using the nanocomposite (CMTKG/ZnO) as an adsorbent. The nanocomposite reached its maximum adsorption during 80 minutes of contact time, 30 mg/L chromium (VI) concentration, 2.0 g/L adsorbent part, and 7.0 pH. Further research into the antifungal activity of CMTKG/ZnO nanocomposites against Aspergillus flavus MTCC-2799 was conducted.

Publisher

Journal of New Materials for Electrochemical Systems

Subject

Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3