Author:
Muñoz-Galindez Jader Alejandro,Vargas-Cañas Rubiel
Abstract
En este trabajo se presentan dos modelos de interpretación de Lengua de Señas Colombiana (LSC), usando métodos estáticos y dinámicos que emplean inteligencia artificial. Se utilizó como referente la metodología CRISP-DM, creando una base de datos con videos de setenta participantes no expertos, siendo preprocesados y posteriormente divididos en proporciones de 70% - 30% para entrenamiento y prueba, respectivamente. El repositorio se nombró como LSC-W70 y se empleó sobre un modelo preentrenado de redes neuronales convolucionales y otro en combinación con redes LSTM. Los resultados alcanzaron un 67% y 76% accuracy para los modelos estático y dinámico, respectivamente, donde el modelo dinámico presenta mejoras en señas similares identificando la dirección del movimiento para definir el tipo de seña. En este sentido, se desarrolló una herramienta de interpretación dinámica de lengua de señas colombiano que ayuda a cerrar brechas de comunicación generando igualdad entre las personas.
Publisher
Universidad Pedagogica y Tecnologica de Colombia
Reference15 articles.
1. Boháček, M., & Hrúz, M. (2022). Sign Pose-based Transformer for Word-level Sign Language Recognition. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), 182-191. https://doi.org/10.1109/WACVW54805.2022.00024
2. Díaz, C., Goycoolea, M., & Cardemil, F. (2016). HIPOACUSIA: TRASCENDENCIA, INCIDENCIA Y PREVALENCIA. Revista Médica Clínica Las Condes, 27 (6), 731-739. https://doi.org/10.1016/j.rmclc.2016.11.003
3. Galvis-Serrano, E. H., Sánchez-Galvis, I., Flórez, N., & Zabala-Vargas, S. (2019). Clasificación de Gestos de la Lengua de Señas Colombiana a partir del Análisis de Señales Electromiográficas utilizando Redes Neuronales Artificiales. Información Tecnológica, 30 (2), 171-180. https://doi.org/10.4067/S0718-07642019000200171
4. IBM. (febrero 27, 2021). Documentation. https://www.ibm.com/docs/en/cloud-paks/cp-data/3.0.1?topic=overview-accuracy
5. INSOR, (2021). Informe técnico Estado Goce en Derechos de la Población sorda 2019.