Statismo - A framework for PCA based statistical models

Author:

Lüthi Marcel,Blanc Remi,Albrecht Thomas,Gass Tobias,Goksel Orcun,Büchler Philippe,Kistler Michael,Bousleiman Habib,Reyes Mauricio,Cattin Philippe,Vetter Thomas

Abstract

This paper describes the Statismo framework, which is a framework for PCA based statistical models.Statistical models are used to describe the variability of an object within a population, learned from a set of training samples. Originally developed to model shapes, statistical models are now increasingly used to model the variation in different kind of data, such as for example images, volumetric meshes or deformation fields. Statismo has been developed with the following main goals in mind: 1) To provide generic tools for learning different kinds of PCA based statistical models, such as shape, appearance or deformations models. 2) To make the exchange of such models easier among different research groups and to improve the reproducibility of the models. 3) To allow for easy integration of new methods for model building into the framework. To achieve the first goal, we have abstracted all the aspects that are specific to a given model and data representation, into a user defined class. This does not only make it possible to use Statismo to create different kinds of PCA models, but also allows Statismo to be used with any toolkit and data format. To facilitate data exchange, Statismo defines a storage format based on HDF5, which includes all the information necessary to use the model, as well as meta-data about the model creation, which helps to make model building reproducible. The last goal is achieved by providing a clear separation between data management, model building and model representation. In addition to the standard method for building PCA models, Statismo already includes two recently proposed algorithms for building conditional models, as well as convenience tools for facilitating cross-validation studies. Although Statismo has been designed to be independent of a particular toolkit, special efforts have been made to make it directly useful for VTK and ITK. Besides supporting model building for most data representations used by VTK and ITK, it also provides an ITK transform class, which allows for the integration of Statismo with the ITK registration framework. This leverages the efforts from the ITK project to readily access powerful methods for model fitting.

Publisher

NumFOCUS - Insight Software Consortium (ITK)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3