Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI.

Author:

Radau Perry,Lu Yingli,Connelly Kim,Paul Gideon,Dick Alexander J,Wright Graham A

Abstract

The motivation of the segmentation challenge is to quantitatively analyze global and regional cardiac function from cine magnetic resonance (MR) images, clinical parameters such as ejection fraction (EF), left ventricle myocardium mass (MM), and stroke volume (SV) are required. Calculations of these parameters depend upon accurate delineation of endocardial and epicardial contours of the left ventricle (LV). Manual delineation is time-consuming and tedious and has high inter-observer variability. Thus, fully automatic LV segmentation is desirable.The automatic segmentation of the LV in cine MR typically faces four challenges: 1) the overlap between the intensity distributions within the cardiac regions; 2) the lack of edge information; 3) the shape variability of the endocardial and epicardial contours across slices and phases; and 4) the inter-subject variability of these factors. A number of methods have been proposed for (semi-) automatic LV segmentation, including using a probability atlas [1], dynamic programming [2-3], fuzzy clustering [4], a deformable model [5], an active appearance model [6], a variational and level set [7-10], graph cuts [11-12] and an image-driven approach [13]. For a complete review of recent literature describing cardiac segmentation techniques, see [14]. Although the segmentation results have improved, accurate LV segmentation is still acknowledged as a difficult problem.The goals of this contest are to compare LV segmentation methods by providing an evaluation system, and a database of images and expert contours. Comparing segmentation results across research studies can be difficult due to unspecified differences in the method or implementation of evaluation metrics. This contest will provide open-source code for contour evaluation. Furthermore, the database will provide a set of images such that confounding segmentation differences due to image quality or pathology could be eliminated.

Publisher

NumFOCUS - Insight Software Consortium (ITK)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3