Automatic accuracy measurement for multi-modal rigid registration using feature descriptors

Author:

Hauler Frida,Jurisic Miro,Furtado Hugo,Sabatini Umberto,Laprie Anne,Nestle Ursula,Birkfellner Wolfgang

Abstract

In radiotherapy (RT) for tumor delineation and diagnostics, complementary information of multi-modal images is used. Using high ionizing radiation, the accuracy of registered volume data is crucial; therefore a reliable and robust evaluation method for registered images is needed in clinical practice. Multi-modal image registration aligns images from different modalities like computed tomography (CT) and magnetic resonance imaging (MRI) or cone beam computed tomography (CBCT) into one common frame of reference. The gold standard validation methods are visual inspection by radiation oncology experts and fiducial-based evaluation. However, visual inspection is a qualitative measure with a range of 2-6 mm inaccuracy, it is time consuming and prone to errors. The fiducial-based evaluation is an invasive method when fiducial markers are fixated to bone or implanted in organs. Therefore, in clinical practice a robust non-invasive automated method is needed to validate registration of multi-modal images. The aim of this study is to introduce and validate an automatic landmark-based accuracy measure for multi-modal image rigid registration using feature descriptors. A porcine dataset with fixed fiducial markers was used to compare our accuracy measure with the target registration error of fiducial markers.In addition, the robustness of our evaluation method was tested on multi-vendor database consisted of 10 brain and 20 lung cases comparing the automatic landmark accuracy measure based on feature descriptors with manual landmark based evaluation. An automatic, non-invasive method based on feature descriptors for accuracy evaluation of multi-modal rigid registration was introduced. The method can be used to provide accuracy information slice-by slice on CT, CBCT and CT, MR-T1, -T2 weighted, MR-T1 contrast enhanced (ce) multi-modal images.

Publisher

NumFOCUS - Insight Software Consortium (ITK)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3