An Automatic Segmentation of T2-FLAIR Multiple Sclerosis Lesions

Author:

Souplet Jean-christophe,Lebrun Christine,Ayache Nicholas,Malandain Gregoire

Abstract

Multiple sclerosis diagnosis and patient follow-up can be helped by an evaluation of the lesion load in MRI sequences. A lot of automatic methods to segment these lesions are available in the literature. The MICCAI workshop Multiple Sclerosis (MS) lesion segmentation Challenge 08 allows to test and compare these algorithms. This paper presents a method designed to detect hyperintense signal area on T2-FLAIR sequence and its results on the Challenge test data. The proposed algorithm uses only three conventional MRI sequences: T1, T2 and T2-FLAIR. First, images are cropped, spatially unbiased and skull-stripped. A segmentation of the brain into its different compartments is performed on the T1 and the T2 sequences. From these segmentations, a threshold for the T2-FLAIR sequence is automatically computed. Then postprocessing operations select the most plausible lesions in the obtained hyperintense signals. Global result on the test data (80/100) is close to the inter-expert variability (90/100).

Publisher

NumFOCUS - Insight Software Consortium (ITK)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3