Challenge on Endocardial Three-dimensional Ultrasound Segmentation (CETUS)

Author:

Bernard Olivier,Heyde Brecht,Alessandrini Martino,Barbosa Daniel,Camarasu-Pop Sorina,Cervenansky Frederic,Valette Sebastien,Mirea Oana,Galli Elena,Geleijnse Marcel,Papachristidis Alexandros,Bosch Johan G.,D'hooge Jan

Abstract

Real-time 3D echocardiography has already been shown to be an accurate tool for left ventricular (LV) volume assessment. However, LV border identification remains a challenging task, mainly because of the low contrast of the images combined with drop-out artifacts. Many (semi-)automatic algorithms have been proposed to segment the LV border, but a systematic and fair comparison between such methods has so far been impossible due to a lack of publicly available common database. The aim of this MICCAI challenge was to gather researchers around the field of LV segmentation in 3D cardiac ultrasound by providing a common database to compare algorithms directly. The proposed platform will allow a consistent evaluation and ranking of the current state-of-the-art segmentation solutions and will contribute to a faster clinical translation of groundbreaking technical advances. The purpose of this paper is to describe the technical aspects of the generation of the database, give an overview of the ranking strategy and the outline of the challenge itself.

Publisher

NumFOCUS - Insight Software Consortium (ITK)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medical image super-resolution;Artificial Intelligence and Image Processing in Medical Imaging;2024

2. Efficient Left Ventricle Segmentation in 3D Echocardiography using Deep nnU-Net;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03

3. Graph Convolutional Neural Networks for Automated Echocardiography View Recognition: A Holistic Approach;Simplifying Medical Ultrasound;2023

4. Extraction of Volumetric Indices from Echocardiography: Which Deep Learning Solution for Clinical Use?;Functional Imaging and Modeling of the Heart;2023

5. A Modified Fuzzy Inference Rule-Based Model for 3D Speckle Tracking;International Journal of Fuzzy Systems;2022-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3