IMPLEMENTATION OF THE INDICATOR SYSTEM IN MODELING OF COMPLEX TECHNICAL SYSTEMS

Author:

Leoshchenko S. D.,Subbotin S. A.,Oliinyk A. O.,Narivs’kiy O. E.

Abstract

Context. The problem of determining the optimal topology of a neuromodel, which is characterized by a high level of logical transparency in modeling complex technical systems, is considered. The object of research is the process of applying an indicator system to simplify and select the topology of neuromodels. Objective of the work is to develop and use a system of indicators to determine the level of complexity of the modeling problem and gradually select the optimal logically transparent topology of the neuromodel. Method. A method is proposed for selecting an optimal, logically transparent neural network topology for modeling complex technical systems using a system of corresponding indicators. At the beginning, the method determines the overall level of complexity of the modeling task and, using the obtained estimate, determines the method for further optimization of the neuromodel. Then, using Task data and input data characteristics, the method allows to obtain the most optimal structure of the neural model for further modeling of the system. The method reduces trainingvtime and increases the level of logical transparency of neuromodels, which significantly expands the practical use of such models, without using neuroevolution methods, which may not be justified by resource-intensive tasks. Results. The developed method is implemented and investigated in solving the problem of modeling the dynamics of pitting processes of steel alloys. Using the developed method made it possible to reduce the training time of the model by 22%, depending on the computing resources used. The method also increased the level of logical transparency of the model by reducing the number of computing nodes by 50%, which also indicates faster and more efficient use of resources. Conclusions. The conducted experiments confirmed the operability of the proposed mathematical support and allow us to recommend it for use in practice in the design of topologies of neuromodels for further solving modeling, diagnosis and evaluation problems. Prospects for further research may consist in the development of methods for structural optimization of previously synthesized models and the development of new methods for feature selection.

Publisher

Zaporizhzhia National Technical University

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NEURAL NETWORK DIAGNOSTICS OF AIRCRAFT PARTS BASED ON THE RESULTS OF OPERATIONAL PROCESSES;Radio Electronics, Computer Science, Control;2022-06-18

2. NEUROMODELING OF OPERATIONAL PROCESSES;Radio Electronics, Computer Science, Control;2022-04-11

3. SYNTHESIS OF A NEURAL NETWORK MODEL OF INDUSTRIAL CONSTRUCTION PROCESSES USING AN INDICATOR SYSTEM;Radio Electronics, Computer Science, Control;2022-01-10

4. THE METHOD OF STRUCTURAL ADJUSTMENT OF NEURAL NETWORK MODELS TO ENSURE INTERPRETATION;Radio Electronics, Computer Science, Control;2021-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3