ONLINE FUZZY CLUSTERING OF INCOMPLETE DATA USING CREDIBILISTIC APPROACH AND SIMILARITY MEASURE OF SPECIAL TYPE

Author:

Bodyanskiy Ye. V.,Shafronenko A. Yu.,Klymova I. N.

Abstract

Context. In most clustering (classification without a teacher) tasks associated with real data processing, the initial information is usually distorted by abnormal outliers (noise) and gaps. It is clear that “classical” methods of artificial intelligence (both batch and online) are ineffective in this situation.The goal of the paper is to propose the procedure of fuzzy clustering of incomplete data using credibilistic approach and similarity measure of special type. Objective. The goal of the work is credibilistic fuzzy clustering of distorted data, using of credibility theory. Method. The procedure of fuzzy clustering of incomplete data using credibilistic approach and similarity measure of special type based on the use of both robust goal functions of a special type and similarity measures, insensitive to outliers and designed to work both in batch and its recurrent online version designed to solve Data Stream Mining problems when data are fed to processing sequentially in real time. Results. The introduced methods are simple in numerical implementation and are free from the drawbacks inherent in traditional methods of probabilistic and possibilistic fuzzy clustering data distorted by abnormal outliers (noise) and gaps. Conclusions. The conducted experiments have confirmed the effectiveness of proposed methods of credibilistic fuzzy clustering of distorted data operability and allow recommending it for use in practice for solving the problems of automatic clusterization of distorted data. The proposed method is intended for use in hybrid systems of computational intelligence and, above all, in the problems of learning artificial neural networks, neuro-fuzzy systems, as well as in the problems of clustering and classification.

Publisher

Zaporizhzhia National Technical University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monitoring Sleep-Related Breathing Disorders with Optical Flow;Lecture Notes in Networks and Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3