ALGORITHMS AND ARCHITECTURE OF THE SOFTWARE SYSTEM OF AUTOMATED NATURAL AND ANTHROPOGENIC LANDSCAPE GENERATION

Author:

Levus Ye. V.,Morozov M. Yu.,Moravskyi R. О.,Pustelnyk P. Ya.

Abstract

Context. The problem of automation of the generation of natural and anthropogenic landscapes is considered. The subject of the research is methods of procedural generation of landscapes that quickly and realistically visualize natural and anthropogenic objects taking into account different levels of detail. Objective. The goal of the work is to improve the rendering quality and efficiency of the procedural generation process of landscape surfaces at any level of detail based on the implementation of the developed method. Method. The proposed method of visualization involves the construction of a natural landscape using Bezier curves and surfaces and manual editing of individual segments; use of software agents that are responsible for individual steps of generating anthropogenic objects; adaptation of anthropogenic objects to the characteristics of natural landscapes; containerization of three-dimensional objects, which is used in various steps to organize the storage and loading of objects efficiently. A generated heightmap based on the Perlin noise algorithm is used to construct surfaces on individual segments of the natural landscape. Landscape processing software agents are used to unify the design of algorithms for creating and processing information about anthropogenic objects. Correct application operation and error resistance is guaranteed due to the inheritance of a specific interface by all implementations of agents. Containerization with two-level caching ensures the efficiency of display detailing. Results. The developed method is implemented programmatically, and its efficiency is investigated for different variants of input data, which to the greatest extent determine the complexity of visualization objects. Conclusions. The conducted experiments confirmed the efficiency of the proposed algorithmic software and its viability in practice in solving problems of automated landscape generation. Prospects for further research include improvement and expansion of the algorithms for procedural landscape generation, functionality complication of manual visualized object processing, and division of individual objects into separate hierarchies of containers.

Publisher

Zaporizhzhia National Technical University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3