REWRITING IDENTIFICATION TECHNOLOGY FOR TEXT CONTENT BASED ON MACHINE LEARNING METHODS

Author:

Kholodna N.,Vysotska V.

Abstract

Context. Paraphrased textual content or rewriting is one of the difficult problems of detecting academic plagiarism. Most plagiarism detection systems are designed to detect common words, sequences of linguistic units, and minor changes, but are unable to detect significant semantic and structural changes. Therefore, most cases of plagiarism using paraphrasing remain unnoticed. Objective of the study is to develop a technology for detecting paraphrasing in text based on a classification model and machine learning methods through the use of Siamese neural network based on recurrent and Transformer type – RoBERTa to analyze the level of similarity of sentences of text content. Method. For this study, the following semantic similarity metrics or indicators were chosen as features: Jacquard coefficient for shared N-grams, cosine distance between vector representations of sentences, Word Mover’s Distance, distances according to WordNet dictionaries, prediction of two ML models: Siamese neural network based on recurrent and Transformer type - RoBERTa. Results. An intelligent system for detecting paraphrasing in text based on a classification model and machine learning methods has been developed. The developed system uses the principle of model stacking and feature engineering. Additional features indicate the semantic affiliation of the sentences or the normalized number of common N-grams. An additional fine-tuned RoBERTa neural network (with additional fully connected layers) is less sensitive to pairs of sentences that are not paraphrases of each other. This specificity of the model may contribute to incorrect accusations of plagiarism or incorrect association of user-generated content. Additional features increase both the overall classification accuracy and the model’s sensitivity to pairs of sentences that are not paraphrases of each other. Conclusions. The created model shows excellent classification results on PAWS test data: precision – 93%, recall – 92%, F1score – 92%, accuracy – 92%. The results of the study showed that Transformer-type NNs can be successfully applied to detect paraphrasing in a pair of texts with fairly high accuracy without the need for additional feature generation.

Publisher

Zaporizhzhia National Technical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3