IN-MEMORY INTELLIGENT COMPUTING

Author:

Hahanov V. I.,Abdullayev V. H.,Chumachenko S. V.,Lytvynova E. I.,Hahanova I. V.

Abstract

Context. Processed big data has social significance for the development of society and industry. Intelligent processing of big data is a condition for creating a collective mind of a social group, company, state and the planet as a whole. At the same time, the economy of big data (Data Economy) takes first place in the evaluation of processing mechanisms, since two parameters are very important: speed of data processing and energy consumption. Therefore, mechanisms focused on parallel processing of large data within the data storage center will always be in demand on the IT market. Objective. The goal of the investigation is to increase the economy of big data (Data Economy) thanks to the analysis of data as truth table addresses for the identification of patterns of production functionalities based on the similarity-difference metric. Method. Intelligent computing architectures are proposed for managing cyber-social processes based on monitoring and analysis of big data. It is proposed to process big data as truth table addresses to solve the problems of identification, clustering, and classification of patterns of social and production processes. A family of automata is offered for the analysis of big data, such as addresses. The truth table is considered as a reasonable form of explicit data structures that have a useful constant – a standard address routing order. The goal of processing big data is to make it structured using a truth table for further identification before making actuator decisions. The truth table is considered as a mechanism for parallel structuring and packing of large data in its column to determine their similarity-difference and to equate data at the same addresses. Representation of data as addresses is associated with unitary encoding of patterns by binary vectors on the found universe of primitive data. The mechanism is focused on processorless data processing based on read-write transactions using in-memory computing technology with significant time and energy savings. The metric of truth table big data processing is parallelism, technological simplicity, and linear computational complexity. The price for such advantages is the exponential memory costs of storing explicit structured data. Results. Parallel algorithms of in-memory computing are proposed for economic mechanisms of transformation of large unstructured data, such as addresses, into useful structured data. An in-memory computing architecture with global feedback and an algorithm for matrix parallel processing of large data such as addresses are proposed. It includes a framework for matrix analysis of big data to determine the similarity between vectors that are input to the matrix sequencer. Vector data analysis is transformed into matrix computing for big data processing. The speed of the parallel algorithm for the analysis of big data on the MDV matrix of deductive vectors is linearly dependent on the number of bits of the input vectors or the power of the universe of primitives. A method of identifying patterns using key words has been developed. It is characterized by the use of unitary coded data components for the synthesis of the truth table of the business process. This allows you to use read-write transactions for parallel processing of large data such as addresses. Conclusions. The scientific novelty consists in the development of the following innovative solutions: 1) a new vector-matrix technology for parallel processing of large data, such as addresses, is proposed, characterized by the use of read-write transactions on matrix memory without the use of processor logic; 2) an in-memory computing architecture with global feedback and an algorithm for matrix parallel processing of large data such as addresses are proposed; 3) a method of identifying patterns using keywords is proposed, which is characterized by the use of unitary coded data components for the synthesis of the truth table of the business process, which makes it possible to use the read-write transaction for parallel processing of large data such as addresses. The practical significance of the study is that any task of artificial intelligence (similarity-difference, classification-clustering and recognition, pattern identification) can be solved technologically simply and efficiently with the help of a truth table (or its derivatives) and unitarily coded big data . Research prospects are related to the implementation of this digital modeling technology devices on the EDA market. KEYWORDS: Intelligent

Publisher

National University "Zaporizhzhia Polytechnic"

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3