BUILDING A SCALABLE DATASET FOR FRIDAY SERMONS OF AUDIO AND TEXT (SAT)

Author:

Samah A. A.,Dimah H. A.,Hassanin M. A.

Abstract

Context. Today, collecting and creating datasets in various sectors has become increasingly prevalent. Despite this widespread data production, a gap still exists in specialized domains, particularly in the Islamic Friday Sermons (IFS) domain. It is rich with theological, cultural, and linguistic studies that are relevant to Arab and Muslim countries, not just religious discourses. Objective. The goal of this research is to bridge this lack by introducing a comprehensive Sermon Audio and Text (SAT) dataset with its metadata. It seeks to provide an extensive resource for religion, linguistics, and sociology studies. Moreover, it aims to support advancements in Artificial Intelligence (AI), such as Natural Language Processing and Speech Recognition technologies. Method. The development of the SAT dataset was conducted through four distinct phases: planning, creation and processing, measurement, and deployment. The SAT dataset contains a collection of 21,253 audio and corresponding transcript files that were successfully created. Advanced audio processing techniques were used to enhance speech recognition and provide a dataset that is suitable for wide-range use. Results. The fine-tuned SAT dataset achieved a 5.13% Word Error Rate (WER), indicating a significant improvement in accuracy compared to the baseline model of Microsoft Azure Speech. This achievement indicates the dataset’s quality and the employed processing techniques’ effectiveness. In light of this, a novel Closest Matching Phrase (CMP) algorithm was developed to enhance the high confidence of equivalent speech-to-text by adjusting lower ratio phrases. Conclusions. This research contributes significant impact and insight into different studies, such as religion, linguistics, and sociology, providing invaluable insights and resources. In addition, it is demonstrating its potential in Artificial Intelligence (AI) and supporting its applications. In future research, we will focus on enriching this dataset expansion by adding a sign language video corpus, using advanced alignment techniques. It will support ongoing Machine Translation (MT) developments for a broader understanding of Islamic Friday Sermons across different linguistics and cultures.

Publisher

National University "Zaporizhzhia Polytechnic"

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Establishing a multimodal dataset for Arabic Sign Language (ArSL) production;Journal of King Saud University - Computer and Information Sciences;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3