Author:
Rolik O. I.,Omelchenko V. V.
Abstract
Context. The problem of minimizing redundant resource reservation while maintaining QoS at an agreed level is crucial for modern information systems. Modern information systems can include a large number of applications, each of which uses computing resources and has its own unique features, which require a high level of automation to increase the efficiency of computing resource management processes.
Objective. The purpose of this paper is to ensure the quality of IT services at an agreed level in the face of significant dynamics of user requests by developing and using a method of proactive automatic application scaling in Kubernetes.
Method. This paper proposes a proactive horizontal scaling method based on the Prophet time series prediction algorithm. Prometheus metrics storage is used as a data source for training and validating forecasting models. Based on the historical metrics, a model is trained to predict the future utilization of computation resources using Prophet. The obtained time series is validated and used to calculate the required number of application replicas, considering deployment delays.
Results. The experiments have shown the effectiveness of the proposed proactive automated application scaling method in comparison with existing solutions based on the reactive approach in the selected scenarios. This method made it possible to reduce the reservation of computing resources by 47% without loss of service quality compared to the configuration without scaling.
Conclusions. A method for automating the horizontal scaling of applications in Kubernetes is proposed. Although the experiments have shown the effectiveness of this solution, this method can be significantly improved. In particular, it is necessary to consider the possibility of integrating a reactive component for atypical load patterns.
Publisher
National University "Zaporizhzhia Polytechnic"