ENSEMBLE OF ADAPTIVE PREDICTORS FOR MULTIVARIATE NONSTATIONARY SEQUENCES AND ITS ONLINE LEARNING

Author:

Bodyanskiy Ye. V.,Lipianina-Honcharenko Kh. V.,Sachenko A. O.

Abstract

Context. In this research, we explore an ensemble of metamodels that utilizes multivariate signals to generate forecasts. The ensemble includes various traditional forecasting models such as multivariate regression, exponential smoothing, ARIMAX, as well as nonlinear structures based on artificial neural networks, ranging from simple feedforward networks to deep architectures like LSTM and transformers. Objective. A goal of this research is to develop an effective method for combining forecasts from multiple models forming metamodels to create a unified forecast that surpasses the accuracy of individual models. We are aimed to investigate the effectiveness of the proposed ensemble in the context of forecasting tasks with nonstationary signals. Method. The proposed ensemble of metamodels employs the method of Lagrange multipliers to estimate the parameters of the metamodel. The Kuhn-Tucker system of equations is solved to obtain unbiased estimates using the least squares method. Additionally, we introduce a recurrent form of the least squares algorithm for adaptive processing of nonstationary signals. Results. The evaluation of the proposed ensemble method is conducted on a dataset of time series. Metamodels formed by combining various individual models demonstrate improved forecast accuracy compared to individual models. The approach shows effectiveness in capturing nonstationary patterns and enhancing overall forecasting accuracy. Conclusions. The ensemble of metamodels, which utilizes multivariate signals for forecast generation, offers a promising approach to achieve better forecasting accuracy. By combining diverse models, the ensemble exhibits robustness to nonstationarity and improves the reliability of forecasts.

Publisher

National University "Zaporizhzhia Polytechnic"

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OLTW-TEC: online learning with sliding windows for text classifier ensembles;Frontiers in Artificial Intelligence;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3