Soil refinement accelerates in-field degradation rates of soil-biodegradable mulch films

Author:

Bianchini MarcoORCID,Trozzo LauraORCID,D'Ottavio ParideORCID,Giustozzi Marco,Toderi MarcoORCID,Ledda LuigiORCID,Francioni MatteoORCID

Abstract

Soil-biodegradable mulch films are a promising solution to replace conventional polyethylene-based mulch films, the use of which has led to negative environmental impacts. Soil-biodegradable mulch films are specifically designed to be incorporated into the soil at the end of the cropping cycle, and are expected to be biodegraded by soil microorganisms. The biodegradability of such products must be tested under laboratory-controlled conditions following international standards, although these can fail to represent real environmental conditions where mulch films are used. The objective of this study was to evaluate the effects of soil refinement on the degradation rates of three different commercial soil-biodegradable mulch films after their incorporation into the soil. The hypotheses were that: (i) soil refinement (i.e., ploughing followed by grubbing) creates more favourable conditions for film biodegradation compared to ploughing alone; and (ii) different mulch films show different degradation rates. An open-field completely randomised design was applied to test the effects of soil refinement by ploughing to 0.35 m depth without and with subsequent grubbing to 0.15 m depth twice. Three commercially available soil-biodegradable mulch films were sampled in 2020 (i.e., two Mater-bi-based, one Ecovio-based) at the end of a zucchini growing season (~3 months) when films were still lying above ground, and were later buried at 0.2 m depth inside mesh bags. Biodegradation rates of the sampled films were assessed with the indirect indicators of film weight loss and surface area loss at ~2-month intervals over 314 days. The results showed that soil refinement significantly accelerated degradation of the three tested mulch films by 14% and 17% according to the loss of weight and surface area indicators, respectively. One Mater-bi-based film showed higher degradation rates compared to the other two films. Future studies are needed to quantify the time needed for these different mulch films to be completely biodegraded. Such studies should be carried out following standards for laboratory incubation and/or in-field quantification of residual polymers in the soil over time. Highlights- Degradation rates of three biodegradable mulch films were evaluated in the open-field.- Soil refinement accelerates the degradation of film weight (14%) and surface (17%).- Highest degradation rates were observed for one Mater-bi-based film.- Fastest degradation rates were observed in spring for all the tested films.- Weight and surface area loss indicators showed positive relationship.

Publisher

PAGEPress Publications

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3