Endogenous calcium mediates seedling growth and fluoride stress tolerance in four bean genotypes

Author:

Chahine Sara,Melito Sara,Giannini Vittoria,Roggero Pier Paolo,Seddaiu Giovanna

Abstract

Fluoride (F) pollution is a global environmental problem representing a severe risk for food and vegetables grown in contaminated soils. Phaseolus vulgaris L. is widely cultivated in arid and semi-arid regions and in F contaminated areas of the world. For that reason, F tolerance during germination and seedling growth was evaluated for four bean genotypes: Borlotto nano (commercial variety) and three African genotypes (Lyamungu 85, Lyamungu 90 and Jesca). Seeds were grown in sand enriched with NaF or KF at three different levels (0, 80 and 200 mg kg-1). NaCl was used as a benchmark to determine the potential effect of different Na levels in plant. Total F content and mineral accumulation (Na, K and Ca) in roots and shoots were measured. The translocation factor, growth ratio, F tolerance index were evaluated to estimate plant-salt response. Germination rate decreased with increased F level. Borlotto was more F sensitive (0% germination with 200 mg kg-1of KF and NaF) than the African genotypes. Under the highest F concentration (200 mg kg-1), F preferentially accumulated in shoots (Jesca 75.7 mg kg-1, Lyamungu 85 100.1 mg kg-1 and Lyamungu 90 115.4 mg kg-1). Ca content in roots was negatively correlated to F absorption, suggesting its antagonistic role to F mobility. Based on these parameters, Jesca and Lyamungu 85 were the most tolerant species, recording a low F uptake and a high Ca content in the root. This study highlighted the central role of Ca, as a key secondary messenger in regulating the plant growth and development under F stress. Highlights - F stress negatively affected bean germination and seedling growth - F mainly accumulated in the shoots of bean varieties - Ca concentration in the roots played a crucial role in mitigating F accumulation

Publisher

PAGEPress Publications

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3