Durum wheat salt stress tolerance is modulated by the interaction between plant genotypes, soil microbial biomass, and enzyme activity

Author:

Boudabbous Khaoula,Bouhaouel Imen,Benaissa Nadhira,Jerbi Maroua,Trifa Youssef,Sahli Ali,Karmous Chahine,Amara Hajer S.

Abstract

Understanding the relationship between durum wheat genotypes and soil biochemistry under salt stress plays a key role in breeding for yield superior genotypes. Thus, microbial biomass carbon (MBC) and nitrogen (MBN), the activity of three selected enzymes including dehydrogenase (D-ase), alkaline phosphatase (Alk-ase), and protease (P-ase), and available phosphorus (available P) and nitrogen (available N) were assessed. Two landraces and two improved varieties were tested under two salinity levels of water irrigation (0.3 and 12 dS m–1). Soil sampling was carried out at five durum wheat growth stages. The soil biota-genotype interaction seems to affect the biological (MBC, MBN, and enzymatic activities) and chemical (available P and N) traits. The microbial activity of rhizospheric soil was higher at the tillering and flowering stages. Under saline conditions, ‘Maali’ (improved variety) and ‘Agili Glabre’ (landrace) showed the best belowground inputs (e.g., MBC, MBN, enzymatic activities, available P and N) and grain yield (GY) performance. Under the same conditions, four soil biochemical indicators of GY of tolerant genotypes (i.e., ‘Maali’ and ‘Agili Glabre’) were determined as available N, P-ase, available P, Alkase, and D-ase. Stepwise analysis revealed that predictive variables depended on growth stages. Overall, MBC, available N, Alk-ase, and P-ase were the variables that mainly contributed to predicting GY in saline environments. In conclusion, the results suggested a specific interaction between plant genotype roots and soil microbes to overcome salt stress. Thus, soil biological components should acquire more importance in plant salinity tolerance studies. Highlights- Salt-tolerant durum wheat genotypes showed greater microbial activities in the rhizosphere.- Microbial enzymatic changes depended on the interaction plant genotype x soil salinity.- The MBC/MBN ratio and dehydrogenase strongly correlated with grain yield under salinity.- MBC, available N, and alkaline phosphatase as predictors of grain yield at 12 dS m–1.- Tillering and flowering could be key stages of durum wheat salinity tolerance.

Publisher

PAGEPress Publications

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3