Decrease of α-Chains in β-Thalassemia

Author:

Papadaki M.,Vassilopoulos George

Abstract

In the pathophysiology of β-thalassemia, globin chain imbalance plays a central role in predicting red blood cell (RBC) life span and disease severity. Strategies to improve globin chain imbalance are therefore a legitimate target in the management of this incurable genetic disorder. Classical gene addition with the available retroviral vectors can alter one of the two variables while combined reduction of achains could provide a more potent therapeutic effect. We developed foamy virus (FV) vectors for the production of β-globin and vectors targeting the a-globin transcript using the shRNA technology. Using FVderived vectors, we expressed human anti-a-globin short hairpin RNAs, off a potent PolIII promoter (H1); of the 4 different shRNAs tested, α-globin mRNA reduction varied from 6.3 to 54% of the control CD34+ cells. Similarly, vectors developed for the mouse α-globin, resulted in a significant reduction (range 15-28% of the control) of aglobin in erythroid colonies of Lin- cells. To assay vector performance in vivo, we investigated the hematological parameters in thal3+/- mice transpalnted with FV-transduced Lin- cells, transduced with anti-alpha-globin shRNA. Despite low chimerism and low vector copy numbers (<0.5 per cell), we observed a 10% reduction in red cell distribution width, a marker for distorted erythropoiesis. We finally developed a combination FV vector expressing β-globin off a HS40 enhancer and anti-α-globin shRNA and tested its performance in human CD34+ cells from a thalassemic patient. Globin chain imbalance was ameliorated from a β/α ratio of 0.12 to the level of 0.5, clearly indicating a therapeutic benefit. Overall, shRNA control of α-globin excess is a feasible target but requires improvements since the RNAi effect is tough to predict and should ideally be combined with controllable elements.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3