Chitosan adhesives with sub-micron structures for photochemical tissue bonding

Author:

Frost Samuel J.,Houang Jessica,Hook James M.,Lauto Antonio

Abstract

We describe a method for fabricating biocompatible chitosan-based adhesives with sub-micron structures to enhance tissue bonding. This procedure avoids coating and chemical modification of structures and requires a simple drop-casting step for the adhesive film formation. Chitosan thin films (27±3 μm) were fabricated with sub-micron pillars (rectangular cuboid with height ∼150 nm, square dimension ∼1 μm and pitch ∼2 μm) or holes (diameter ~500 nm or ~1 μm, depth ~100 or 400 nm, pitch of 1 or 2 μm). Polydimethylsiloxane moulds were used as negative templates for the adhesive solution that was cast and then allowed to dry to form thin films. These were applied on bisected rectangular strips of small sheep intestine and photochemically bonded by a green laser (λ= 532 nm, irradiance ∼110 J/cm2). The tissue repair was subsequently measured using a computer-interfaced tensiometer. The mould sub-micron structures were reproduced in the chitosan adhesive with high fidelity. The adhesive with pillars achieved the highest bonding strength (17.1±1.2 kPa) when compared to the adhesive with holes (13.0±1.3 kPa, p<0.0001, one-way ANOVA, n=15). The production of chitosan films with patterned pillars or holes in the sub-micron range was demonstrated, using a polydimethylsiloxane mould and a single drop-casting step. This technique is potentially scalable to produce adhesives of larger surface areas.

Publisher

PAGEPress Publications

Subject

Biomedical Engineering,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3