Neurofluids: A holistic approach to their physiology, interactive dynamics and clinical implications for neurological diseases

Author:

Agarwal Nivedita,Contarino Christian,Toro Eleuterio F.

Abstract

There is increasing interest in understanding the physiology of the extracellular fluid compartments in the central nervous system and their dynamic interaction. Such interest has been in part prompted by a vigorous resurgence of the role of the venous system, the recent discoveries of the meningeal lymphatics, the brain waste removal mechanisms and their potential link to neurological diseases, such as idiopathic intracranial hypertension, Ménière’s disease, migraine, small vessel disease, and most neurodegenerative diseases. The rigid cranial cavity houses several space-competing material compartments: the brain parenchyma (BP) and four extracellular fluids, namely arterial, venous, cerebrospinal fluid (CSF) and interstitial fluid (ISF). During cardiac pulsations, the harmonious, temporal and spatial dynamic interaction of all these fluid compartments and the BP assures a constant intracranial volume at all times, consistent with the Monro-Kellie hypothesis. The dynamic interaction involves high-pressure input of arterial blood during systole and efflux of CSF into the spinal subarachnoid space (SSAS) followed by venous blood exiting directly into the vertebral and internal jugular veins towards the heart and intraventricular CSF displacing caudally towards the SSAS. Arterial pulsatile energy is transmitted to the BP that contributes to the smooth movement of fluids in and out of the brain. Perturbing any of these fluid compartments will alter the entire brain dynamics, potentially increase intracranial pressure, affect perfusion and hamper clearance capacity of metabolic waste. This review of all major extracellular fluid compartments within the brain, advocates a holistic approach to our understanding of the fluid dynamics, rather than focusing on a single compartment when analyzing neurological diseases. This approach may contribute to advance our comprehension of some common neurological disorders, paving the way to newer treatment options.

Publisher

PAGEPress Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3