Mitigating the impact of soil salinity: recent developments and future strategies

Author:

Tedeschi AnnaORCID,Schillaci MartinoORCID,Balestrini RaffaellaORCID

Abstract

Soil salinity is among the major abiotic stresses that plants must face, mainly in arid and semiarid re-gions, and high salinity tolerance is an important agronomic trait to sustain food production. Agricul-tural soils are unstable and subject to changes in salinity level, and monitoring them at both the local and the regional scale is a relevant activity to adopt soil and water management strategies to decrease salt concentration in the root zone, thus minimizing impacts on plant growth and productivity. Addi-tionally, beneficial soil microorganisms such as arbuscular mycorrhizal fungi (AMF) and plant-growth promoting bacteria (PGPB), particularly when sourced in saline environments, can alleviate plant salinity stress by multiple mechanisms. In this review, some interventions aimed at reducing soil salinity will be discussed, as well as interventions aimed at reducing the vulnerability of crops to sa-line stress to obtain more tolerant plants. Highlights - Fast and reliable monitoring of soil status can help to promptly adopt strategies to decrease soil salin-ity and/or reduce crops vulnerability to salt. - Leaching, alternating fresh- and saline water for irrigation purpose and the use of efficient irrigation systems can be effective water management strategies against soil salinity. - Mulching and the use of amendments can improve soil status by decreasing its NaCl levels. - The rotation of halophyte and glycophyte plant species can allow NaCl sequestration while maintain-ing profitable yields. - Saline environments and plants adapted to such environments can be a valuable source of PGPB and AMF which can improve plant tolerance to salinity through multiple mechanisms.

Publisher

PAGEPress Publications

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3