3D numerical modeling of THI distribution in livestock structures: a cattle barn case study

Author:

Perez Garcia Carlos Alejandro,Bovo Marco,Torreggiani Daniele,Tassinari Patrizia,Benni Stefano

Abstract

In dairy cattle farming, heat stress largely impairs production, health, and animal welfare. The goal of this study is to develop a workflow and a numerical analysis procedure to provide a real-time 3D distribution of the THI in a generic cattle barn based on temperature and humidity monitored in sample points, besides characterizing the relationship between indoor THI and outside weather conditions. This research was carried out with reference to the study case of a cattle barn. A model has been developed to define the indoor three-dimensional spatial distribution of the Temperature-Humidity Index of a cattle barn, based on environmental measurements at different heights of the building. As a core of the model, the Discrete Sibson Interpolation method was used to render a point cloud that represents the THI values in the non-sampled areas. The area between 1-2 meters was emphasized as the region of greatest interest to quantify the heat waves perceived by dairy cows. The model represents an effective tool to distinguish different areas of the animal occupied zone characterized by different values of THI.

Publisher

PAGEPress Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of microclimate in dairy farms using different model typologies in computational fluid dynamics analyses;Journal of Agricultural Engineering;2024-07-09

2. An Integrated Renewable Energy Plant with Smart Monitoring System for Sustainable Farming;2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor);2023-11-06

3. Modelling the spatial distribution of THI in a cattle barn from data of a smart monitoring system;2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3