Definition of thermal comfort of crops within naturally ventilated greenhouses

Author:

Bovo Marco,Al-Rikabi Shahad,Santolini Enrica,Pulvirenti Beatrice,Barbaresi Alberto,Torreggiani Daniele,Tassinari Patrizia

Abstract

Controlling the microclimate condition inside a greenhouse is very important to ensure the best indoor conditions for both crop growth and crop production. To this regard, this paper provides the results of a novel approach to study a greenhouse, aiming to define a porous media model simulating the crop presence. As first, an experimental campaign has been carried out to evaluate air temperature and air velocity distributions in a naturally ventilated greenhouse with sweet pepper plants cultivated in pots. Then, the main aspects of energy balance, in terms of mass transfer and heat exchange, and both indoor and outdoor climate conditions have been combined to set up a computational fluid dynamics model. In the model, in order to simulate the crop presence and its effects, an isotropic porous medium following Darcy’s law has been defined based on the physical characteristics of the crops. The results show that the porous medium model could accurately simulate the heat and mass transfer between crops, air, and soil. Moreover, the adoption of this model helps to clarify the mechanism of thermal exchanges between crop and indoor microclimate and allows to assess in more realistic ways the microclimate conditions close to the crops.

Publisher

PAGEPress Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3