Author:
Bovo Marco,Al-Rikabi Shahad,Santolini Enrica,Pulvirenti Beatrice,Barbaresi Alberto,Torreggiani Daniele,Tassinari Patrizia
Abstract
Controlling the microclimate condition inside a greenhouse is very important to ensure the best indoor conditions for both crop growth and crop production. To this regard, this paper provides the results of a novel approach to study a greenhouse, aiming to define a porous media model simulating the crop presence. As first, an experimental campaign has been carried out to evaluate air temperature and air velocity distributions in a naturally ventilated greenhouse with sweet pepper plants cultivated in pots. Then, the main aspects of energy balance, in terms of mass transfer and heat exchange, and both indoor and outdoor climate conditions have been combined to set up a computational fluid dynamics model. In the model, in order to simulate the crop presence and its effects, an isotropic porous medium following Darcy’s law has been defined based on the physical characteristics of the crops. The results show that the porous medium model could accurately simulate the heat and mass transfer between crops, air, and soil. Moreover, the adoption of this model helps to clarify the mechanism of thermal exchanges between crop and indoor microclimate and allows to assess in more realistic ways the microclimate conditions close to the crops.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献