Variable-rate spray system for unmanned aerial applications using lag compensation algorithm and pulse width modulation spray technology

Author:

Wang Zhongkuan,Wen Sheng,Lan Yubin,Liu Yue,Dong Yingying

Abstract

To ensure that a variable-rate spray (VRS) system can perform unmanned aerial spray in accordance with a prescription map at different flight speeds, we examine in this paper such significant factors as the response time of the VRS system and the pressure fluctuation of the nozzle during the variable-rate spraying process. The VRS system uses a lag compensation algorithm (LCA) to counteract the droplet deposition position lag caused by the system response delay. In addition, pulse width modulated (PWM) solenoid valves are used for controlling the flowrates of the nozzles on the variable-rate spray system, and a mathematical model was constructed for the spray rate (L min-1) and the relative proportion of time (duty cycle) each solenoid valve is open. The pressure drop and solenoid valve response time at different duty cycles (50%~90%) were measured by indoor experiments. Meanwhile, the lag distance (LD), spray accuracy, and droplet deposition characteristics of the VRS system were tested by conducting outdoor experiments at different flight speeds (4m s-1, 5m s-1, 6m s-1). The results show that LCA can effectively reduce the lag distance. The lag distance (LD) values of the VRS system with LCA ranged from -0.27 to 0.78m with an average value of 0.32m, while without LCA, the LD values increased to 3.5~4.3m with an average value of 3.87m. The overall spray position accuracy was in the range of 91.56%~97.32%. Furthermore, the spray coverage and deposition density, determined using water sensitive paper (WSP), were used to evaluate the spray application performance taking into account the spray volume applied. The VRS system can provide the most suitable spray volumes for insecticide and fungicide plant protection products. Based on a prescription map, the optimized VRS system can achieve accurate pesticide spraying as well as desirable spray coverage and deposition density.

Publisher

PAGEPress Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3