Use of giant reed (Arundo donax L.) to control soil erosion and improve soil quality in a marginal degraded area

Author:

Visconti DonatoORCID,Fiorentino Nunzio,Cozzolino EugenioORCID,Di Mola IdaORCID,Ottaiano LuciaORCID,Mori MauroORCID,Cenvinzo Vincenzo,Fagnano MassimoORCID

Abstract

Soil erosion is one of the biggest environmental problems throughout European Union causing considerable soil losses. Vegetation cover provides an important soil protection against runoff and soil erosion. To this aim, unlike annual crops, perennial plants have the advantage of covering soil for a longer time and reducing soil erodibility thanks to SOM increase due to litter effect and to reduction of soil disturbance (no-tillage). Two experiments were carried out in marginal hilly areas (10% slope) of Southern Italy: i) long-term experiment in which it was evaluated the effect of two fertilization doses (N: 100 and 50 kg N ha−1 from urea) on Arundo donax L. biomass production as well as its effect on soil erosion; ii) three-year experiment to evaluate the soil cover capacity of the giant reed by analysing the plant leaf area index (LAI). Results of the two experiments showed a good soil protection of Arundo donax L. that reduced soil losses by 78% as compared to fallow and showed soil erosion reduction not different from permanent meadow thanks to the soil covering during the period with the highest rain erosivity and to the reduction in soil erodibility. The protective effect of Arundo donax L. from rain erosivity was also confirmed by LAI analysis that showed a good soil covering of giant reed in the above mentioned period, even during the initial yield increasing phase following crop transplant. According to biomass yield, from the fifteen year of cultivation in a low fertile inland hilly area of Southern Italy, giant reed was characterized by a yield-decreasing phase that resulted postponed as compared to more fertile environments thus ensuring a longstanding soil protection from soil erosion. In addition, the higher nitrogen fertilization dose (100 kg ha−1 of N) allowed interesting biomass yield as compared to the lower dose (50 kg N ha−1) and kept constant SOC along the year of experimentation due to an improved contribution of leaf fall, root exudates and root turnover to soil.   Highlights - Soil erosion is an important environmental problem in Mediterranean hilly areas. - Arundo donax L. can significantly reduce soil erosion in hilly cropland. - Soil protection of giant reed is high during the months with higher rain erosivity. - High N inputs enhance giant reed biomass production and soil fertility conservation. - In hilly areas yields are lower but more stable over time than in more fertile environments.

Publisher

PAGEPress Publications

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3