Thermal behaviour of green façades in summer

Author:

Blanco Ileana,Schettini EveliaORCID,Scarascia Mugnozza Giacomo,Vox Giuliano

Abstract

Building greenery systems can represent a sustainable solution for new buildings design and for existing buildings retrofitting, in order to improve the thermal energy performance of buildings, to decrease building energy loads and to contrast the Urban Heat Island. Green façades can influence thermal properties of a building by means of different important mechanisms: the shading, the cooling, the insulating and the wind barrier effect. Moreover, green façades accomplish heating effect in the cold season and at nighttime. An experimental test was developed at small scale at the University of Bari (Italy) from 2014 to 2016 for testing two different green façades. The plant species chosen were Pandorea jasminoides variegated and Rhyncospermum jasminoides, two evergreen climbing plants. A third uncovered wall was used as control. The thermal behaviour of the plants was analysed during the 2016 summer season, by keeping in consideration the external surface temperature of the building and the temperature of the airgap behind the green vertical systems. The daylight temperatures observed on the plant-covered walls during representative days were lower than the respective temperatures of the uncovered wall up to 7.0°C. During nighttime, the temperatures behind the plants were higher than the respective temperatures of the control wall up to 2.2°C. The results shown in the present research allow delineating the behaviour of the two plant species during summer in the Mediterranean climate region.

Publisher

PAGEPress Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3