Multi-class segmentation of navel orange surface defects based on improved DeepLabv3+

Author:

Zhu Yun,Liu Shuwen,Wu Xiaojun,Gao Lianfeng,Xu Youyun

Abstract

To address the problems of current mainstream semantic segmentation network such as rough edge segmentation of navel oranges defects, poor accuracy of small target defect segmentation and insufficient deep-level semantic extraction of defects, feature information will be lost, a multi-class segmentation model based on improved DeepLabv3+ is proposed to detect the surface defects of navel oranges. The Coordinate Attention Mechanism is embedded into the DeepLabv3+ network for better semantic segmentation performance, while the dilated convolution of Atrous Spatial Pyramid Pooling structure is replaced with deformable empty convolution to improve the fitting ability of the network to target shape changes and irregular defects. In addition, a BiFPN-based feature fusion branch is introduced at the DeepLabv3+ encoder side to realize multi-scale feature fusion and enrich feature space and semantic information. The experimental results show that the average intersection ratio and average pixel intersection ratio accuracies of the improved DeepLabv3+ model on the navel orange surface defect dataset are 77.32% and 86.38%, which are 3.81% and 5.29% higher than the original DeepLabv3+ network, respectively, improving the extraction capability of navel orange defect features and having better segmentation performance.

Publisher

PAGEPress Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3