Drag reduction design and experiments for the chisel-shaped shovel tip

Author:

Wang Longlong,Zheng Changjiang,Li Mingke,Mi Tongtong,Li Songze,Yi Xuemei

Abstract

To address the issue of high resistance encountered by traditional chisel-shaped shovel tips during tillage, this study drew inspiration from the micro V-shaped structures found in shark skin. Using laser cladding technology, a V-shaped wear-resistant coating was applied to the front surface of the shovel, with different drag-reducing V-shaped structures achieved by controlling the coating overlap ratio H (including 20%, 40%, and 60%). Additionally, the rear surface of the shovel tip was designed to mimic the V-shaped morphology of shark skin, proportionally amplified, and given a certain backward tilt angle θ to further reduce resistance. Through the discrete element simulation experiments while maintaining θ at 0°, it was found that the shovel tip achieved the best drag reduction effect when H was 40%. Based on this, the study varied the values of θ (including 0°, 1°, 3°, and 5°) while keeping H at 40%. Discrete element simulation experiments were conducted at depths of 250mm, 275mm, and 300mm to analyze the disturbance effect, fragmentation effect, and resistance of the shovel tip. Considering all factors, the shovel tip with θ of 5° was selected as the optimal choice. Finally, a soil trench experiment was conducted to verify the performance of the V-shaped shovel tip with H of 40% and θ of 5°, as well as the chisel-shaped shovel tip, in tillage operations. The experimental results showed good agreement with the simulation results, and the designed V-shaped shovel tip achieved a maximum drag reduction of 12.87%. This design provides valuable references for the structural optimization of subsoiler, contributing to the improvement of their performance and efficiency.

Publisher

PAGEPress Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3